- Endicott, J. F., Lille, J., Kuszaj, J. M., Ramaswamy, B. S., Schmonsees, W. G., Simic, M. G., Glick, M. D. & Rillema, D. P. (1977). *J. Am. Chem. Soc.* **99**, 429–439.
- Flores-Velez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscano, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243–3247.
- Forsellini, E., Parasassi, T., Bombieri, G., Tobe, M. L. & Sosa, M. E. (1986). Acta Cryst. C42, 563-565.
- Ito, T., Sugimoto, M., Toriumi, K. & Ito, H. (1981). Chem. Lett. pp. 1477-1478.
- Lai, T. F. & Poon, C. K. (1976). Inorg. Chem. 15, 1562-1566.
- Lichtig, J., Sosa, M. E. & Tobe, M. L. (1984). J. Chem. Soc. Dalton Trans. pp. 581-585.
- Marangoni, G., Panayotou, M. & Tobe, M. L. (1973). J. Chem. Soc. Dalton Trans. pp. 1989-1994.
- Poon, C. K. & Tobe, M. L. (1968). Chem. Commun. pp. 156-158.
- Sheldrick, G. M. (1990). SHELXTLIPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1990). XEMP. Empirical Absorption Correction Program. Version 2.10b. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1993). XSCANS Users Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sovilj, S. P., Vuckovic, G., Babic, K., Matsumoto, N., Avramov-Ivic, M. & Jovanovic, M. (1994). J. Coord. Chem. 31, 167–179.
- Walker, D. D. & Taube, H. (1981). Inorg. Chem. 20, 2828–2834.
- Whimp, P. O., Bailey, M. F. & Curtis, N. F. (1970). J. Chem. Soc. A, pp. 1956–1963.

Acta Cryst. (1997). C53, 1588-1590

(Imidazole- N^3)(N-salicylidene- α -aminoisobutyrato-O,N,O')copper(II) Dimer†

SALAM A. WARDA

Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany. E-mail: warda@ax1501.chemie.uni-marburg.de

(Received 27 March 1997; accepted 3 June 1997)

Abstract

The title compound, $[Cu(C_{11}H_{11}NO_3)(C_3H_4N_2)]$, adopts a square-pyramidal Cu^{II} coordination with the tridentate *N*-salicylidene- α -aminoisobutyrato Schiff base dianion and the imidazole ligand bound in the basal plane. The apex of the pyramid is occupied by a phenolic O atom from the neighbouring chelate at an apical distance of 2.623 (2) Å, building a dimeric structural unit in which the copper(II) ions are magnetically equivalent. The dimeric moieties in the crystal packing are tilted with respect to each other leading to a distorted antiferrodistortive ordering.

Comment

Copper(II) complexes with tridentate Schiff base dianions of the N-salicylideneaminoacidato type (TSB^{2-}) represent a relatively simple model for studies of cooperative bonding effects, which can be investigated by electron paramagnetic resonance (EPR) spectroscopy. In these complexes, which are of the general type $[Cu(TSB)(L)]_n$ (Warda, 1994), three donor atoms (O, N and O) of the Schiff base and a fourth donor atom from the neutral ligand L (N, O or S) normally define the base of a square pyramid. For isolated (monomeric) structures, the copper coordination can be square planar or square pyramidal when a neutral donor ligand is located at the apical site (n =1; Ueki, Ashida, Sasada & Kakudo, 1969; Warda, Friebel, Sivý, Plesch & Švajlenová, 1996); n = 4 is found in the case of (4-ethylpyridine)(N-salicylideneglycinato)copper(II) (Warda, 1997). Polymeric structures $(n = \infty)$ are generally achieved when the apical position is occupied by a carboxylic O atom from an adjacent molecule to make infinite zigzag chains (Warda, Friebel, Sivý, Plesch & Bláhová, 1997). If a phenolic O atom from a neighbouring molecule is apically coordinated, dimeric structures are formed (n = 2; Warda,1994). In this communication, we report on such a case.

The molecule is characterized by a square-pyramidal Cu^{II} coordination with the tridentate Schiff base *N*-salicylidene- α -aminoisobutyrato dianion and a monodentate ligand in the basal plane (imidazole). The involvement of the phenolic O atom of a neighbouring molecule at the apical site, with a Cu—O1ⁱ distance of 2.623 (2) Å, leads to a dimeric structure [symmetry code: (i) 2-x, 1-y, -z]. This distance is comparable with the corresponding bond [2.591 (3) Å] in (imidazole)[*N*-salicylidene-(*R*,*S*)-alaninato]copper(II) (Warda, 1994).

The dimers of the title compound are linked by N3— $H31\cdots O3$ hydrogen bonds to form a ribbon structure parallel to the x axis (Fig. 2).

It has been found (Warda, 1994) that EPR patterns display a coupled g tensor (non-molecular), indicating a distorted antiferrodistortive (90 > 2γ > 45°) ordering, with a tilting angle of $2\gamma = 66^{\circ}$ (EPR result), when the distance between the differently oriented paramagnetic centres is shorter than the critical distance of 8.3 Å; these features are found in the title compound, with a

[†] Alternative name: bis-µ-[2-(2-hydroxybenzylideneamino)-2-methylpropionato-O,N,O':O]-bis[(imidazole-N³)copper(II)].

Fig. 1. The title compound in the crystal showing the dimeric unit with the atom-numbering scheme. Ellipsoids are drawn at the 40% probability level. Symmetry code: (a) 2 - x, 1 - y, -z.

Fig. 2. Projection of the title compound showing the tilting angle (see text) and hydrogen bonding between the dimeric units. Radii are arbitrary; H atoms (except imidazole H) have been omitted for clarity.

tilting angle of 66.7 (2) Å and a Cu···Cu(1-x, 1-y, -z) spacing of 7.4460 (6) Å.

In conclusion, there are two magnetic orientations to be observed, which are consistent with the space group, $P2_1/c$, and the presence of a single molecule in the asymmetric unit. The EPR results are in good agreement with the structural results. At this stage in the documentation of EPR data for a systematic study of the g tensor and for cooperative ordering investigations, the X-ray crystal structure determinations are indispensable for the verification of spectroscopic results.

Experimental

The title compound was synthesized from aqua(N-salicylidene- α -aminoisobutyrato)copper(II) and imidazole according to Fujimaki, Oonishi, Muto & Nakahara (1971) and Warda (1994).

Crystal data

$[Cu(C_{11}H_{11}NO_3)(C_3H_4N_2)]$	Cu $K\alpha$ radiation
$M_r = 336.83$	$\lambda = 1.54178 \text{ Å}$
Monoclinic	Cell parameters from 25
$P2_1/c$	reflections
a = 9.1844 (4) Å	$\theta = 40.48 - 46.68^{\circ}$
b = 16.9279(7) Å	$\mu = 2.265 \text{ mm}^{-1}$
c = 9.3097 (4) Å	T = 293 (2) K
$\beta = 94.489(6)^{\circ}$	Needle
$V = 1442.96(11) \text{ Å}^3$	$0.33 \times 0.09 \times 0.06$ mm
Z = 4	Violet
$D_x = 1.550 \text{ Mg m}^{-3}$	
D_m not measured	

Data collection

Enraf–Nonius CAD-4
diffractometer
ω –2 θ scans
Absorption correction:
empirical, ψ scans
(XPREP; Siemens, 1996a)
$T_{\min} = 0.476, T_{\max} = 0.846$
2286 measured reflections
2140 independent reflections

Refinement

$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.361 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta ho_{min} = -0.359 \text{ e} \text{ \AA}^{-3}$
Extinction correction:
SHELXL96
Extinction coefficient:
0.0025 (3)
Scattering factors from
International Tables for
Crystallography (Vol. C)

2064 reflections with

 $I > 2\sigma(I)$

 $R_{int} = 0.039$ $\theta_{max} = 59.95^{\circ}$ $h = -10 \rightarrow 0$ $k = 0 \rightarrow 19$ $l = -10 \rightarrow 10$ 3 standard reflections frequency: 120 min intensity decay: none

Table 1. Selected geometric parameters (Å, °)

Cu01	1.9127 (18)	Cu—N2	1.962 (2)
Cu—N1	1.933 (2)	Cu—O11	2.623 (2)
Cu—O2	1.9434 (18)		
O1—Cu—N1	93.69 (8)	O2—Cu—N2	92.48 (8)
01—Cu—O2	175.40 (8)	01-Cu-01	86.89 (7)
N1—Cu—O2	83.83 (8)	N1—Cu—O11	101.31 (8)
O1—Cu—N2	90.90 (8)	O2-Cu-O1'	89.78 (7)
NI—Cu—N2	164.74 (9)	N2—Cu—O1'	93.46 (8)
~ .			

Symmetry code: (i) 2 - x, 1 - y, -z.

Table 2. Hydrogen-bonding geometry (Å, °)

Data collection: *CAD-4 Express* (Enraf–Nonius, 1992). Cell refinement: *CAD-4 Express*. Data reduction: *XCAD-4* (Harms, 1997). Program(s) used to solve structure: *SHELXS*96 (Sheldrick, 1996a). Program(s) used to refine structure:

SHELXL96 (Sheldrick, 1996b). Molecular graphics: XP (Siemens, 1996b). Software used to prepare material for publication: SHELXL96.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1216). Services for accessing these data are described at the back of the journal.

References

- Enraf-Nonius (1992). CAD-4 Express. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fujimaki, H., Oonishi, I., Muto, F. & Nakahara, A. (1971). Bull. Chem. Soc. Jpn, 44, 28-33.
- Harms, K. (1997). XCAD-4. Program for the Reduction of CAD-4 Diffractometer Data. University of Marburg, Germany.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996a). SHELXS96. Beta Test Version 5.03. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1996b). SHELXL96. Beta Test Version 5.03. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1996a). XPREP in SHELXLTL. Program for Data Preparation and Reciprocal Space Exploration. Version 5.05. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996b). XP. Molecular Graphics Program. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Ueki, T., Ashida, T., Sasada, Y. & Kakudo, M. (1969). Acta Cryst. B25, 328-336.
- Warda, S. A. (1994). Bioanorganische Kupfer(II) Komplexe mit Dreizähnigen O.N. O-Chelat-Dianionen und Additiven Einzähnigen Donorliganden. Aachen: Verlag Shaker.
- Warda, S. A. (1997). Acta Cryst. C53, 697-699.
- Warda, S. A., Friebel, C., Sivý, J., Plesch, G. & Bláhová, M. (1997). Acta Cryst. C53, 50–54.
- Warda, S. A., Friebel, C., Sivý, J., Plesch, G. & Švajlenová, M. (1996). Acta Cryst. C52, 2763–2766.

Acta Cryst. (1997). C53, 1590-1593

The Chain Polymers (Imidazole)(*N*-salicylideneglycinato)copper(II) and (2-Ethylimidazole)(*N*-salicylidene-glycinato)copper(II)

SALAM A. WARDA

Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany. E-mail: warda@ax1501.chemie.uni-marburg.de

(Received 20 March 1997; accepted 28 May 1997)

Abstract

The title compounds, (imidazole- N^3)(N-salicylideneglycinato-O,N,O')copper(II), [Cu(C₉H₇NO₃)(C₃H₄N₂)], (I), and (2-ethylimidazole- N^3)(N-salicylideneglycinato-

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved O,N,O')copper(II), [Cu(C₉H₇NO₃)(C₅H₈N₂)], (II), adopt square-pyramidal Cu^{II} coordination with the tridentate *N*-salicylideneglycinato Schiff base dianion and the imidazole ligand bound in the basal plane. In both structures, the apex of the distorted pyramid is occupied by a carboxylic O atom from the neighbouring chelate at an apical distance of 2.563 (2) and 2.683 (2) Å in (I) and (II), respectively, thus building infinite zigzag chains. According to the electron paramagnetic resonance patterns, in compound (I), the Cu^{II} complexes are arranged in two and in compound (II), in four, magnetically inequivalent orientations.

Comment

Copper(II) complexes with tridentate Schiff base dianions of the N-salicylideneaminoalkanoato type (TSB^{2-}) represent a relatively simple model for studies of cooperative bonding effects, which can be investigated by electron paramagnetic resonance (EPR) spectroscopy. In these complexes of the general type $[Cu(TSB)(L)]_{n}$ (Warda, 1994), three donor atoms (O, N and O) of the Schiff base and a fourth donor atom from the neutral ligand L (N, O or S) normally define the base of a square pyramid. For isolated (monomeric) structures, the copper coordination can be square planar or square pyramidal when a neutral donor ligand is located at the apical site (n = 1; Ueki, Ashida, Sasada)& Kakudo, 1969; Warda, 1994; Warda, Friebel, Sivý, Plesch & Švajlenová, 1996). Polymeric structures (n = ∞) are achieved when the apical position is occupied by a carboxylic O atom from an adjacent molecule to form infinite chains (Ueki, Ashida, Sasada & Kakudo, 1967; Warda, Friebel, Sivý, Plesch & Bláhová, 1997). In this paper, we report on chain formation in the two different cases of compounds (I) and (II).

In both structures, the molecules are characterized by a square-pyramidal Cu^{II} coordination with the tridentate Schiff base *N*-salicylideneglycinato dianion and a monodentate ligand in the basal plane, *i.e.* imidazole in (I) and 2-ethylimidazole in (II). The apical Cu—O3ⁱ distances 2.563 (2) [symmetry code: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$ in (I)] and 2.683 (2) Å [symmetry code: (i) $\frac{x}{2} - x, \frac{1}{2} + y$, z in (II)], involving a carboxylic O atom of a neighbouring molecule, are elongated in comparison with the corresponding bond [2.334 (6) Å] in aqua(*N*-salicylideneglycinato)copper(II) hemihydrate (Ueki, Ashida, Sasada & Kakudo, 1967). In structure (I), the molecules are connected *via* Cu··O3 bonds leading to an infinite one-

> Acta Crystallographica Section C ISSN 0108-2701 ©1997